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ON THE STABILITY OF A COLUMN SUBJECTED
TO A TIME-DEPENDENT AXTAL LOAD

1. Introduction

The dynamlc stability of a linear elastic column subjected to
a time-varying axial load is investigated, The form of stability con-
sidered is almost sure asymptotic stability in the case that the load
is assumed to be stochastic; if the load is assumed to be determin-
istic the stability is asymptotic stability in the sense of Liapunov,

Studies similar to the one presented here have been previously

3

published by Caughey and Grayl, Ariaratnam2 and Lepore and Shah”, In

7
these works stability conditions were obtained by the modal approach,
Caughey and Gray obtained conditions for almost sure asymptotic sta-
bility, Lepore and Shah for asymptotic stability in the mean.

In this note we give conditions for the almost sure asymptotic
stability of the column, since it seems that this is the more natural
mathematical concept for the physical problem under consideration,
Simultaneously with conditions for asymptotic stability we obtain
measures of exponential decay of the solutiogs which are of interest
in themselves, We first obtain these results by the modal approach,
buﬁ»then show that this procedure, which is somewhat questionable
mathematically, is-unnecessary and that the same estimates and con-
ditions for aimost sure asymptdtic étability can be obtained in a simple
and direct manner from the original partiel differential equation, The

results obtained are then compared to previously published results.

The approach of this paper represents an application and



generalizations of the results of Infanteu on linear differential egqua-

tions,

2. Basie Equations

Consider the displacement w(x,t) of a linear pinned column

subjected to a time-varying axial load p(t) = p_ + F(t) whose

T

“average" over the time interval [0,T] is E&. Let B be the damp-

ing coefficient, In nondimensional form the eguation for this

displacemeﬁt over the time interval of interest is given by

B%N 3%w I oE
- , W o_ -
E;;-+ [pT+f(t)]g;§ gyt il 0<x<1l, 0<%t =T (1)

and by the boundary conditions

2 2
- t
w(0,%) = gﬂﬂi%g—l-= w(1,t) = §!£i%552 -0, tzo. (2)
ax
The nondimensional time-varying load p(t) is assumed to be strictly
.stationary and ergodic in the case that it is assumed to be a stochastic

process. The average of the load p(t) over the desired time interval

[0,T] is defined in such a manner that

. 1 T .
e {f(8)} = 3 £ £(t)dt = 0 (3)

o o o | :
and it i1s assumed that eT[f (t)} exists and is positive. Defining



E(£(t)} = lin e (r(t)}, E(f(t)} = lim e (t)} end p-

T — 0 T >

1lim Py We obtain the standard expectations over the infinite time
T—->w ’

interval. Our choice of measure for the function f£(t) is obviously
motivated by energy considerations.
For the modal analysis, let
o0

w(x,t) = X a (%) sin nmx )
n=1

which, when substituted into (1), yields

D
5+ 2B+ [nuwl(l - —g—2> - newgf(t):lan =0,

nTa (5)
n=1,2,..., 0<tsT
d . . 2
where *° = R It is immediately noted that p =T represents the

BEuler buckling load for this column.

To determine stability conditions for (1) or, in the modal
approach, for (5), we follow the modification of the Liapunov approach
described by Infanteh. Hence, we seek a positive definite functional
V for (1) (function for (5)) such as to obtain a differential in-
equality of the type V/V < AM(t). Such an inequality immediately allows

the determination of gtability conditions and of exponential bounds,

3. Exponential Bounds and Stability Conditions for the Modal Approaéh

Let us first consider equations (5) and determine exponential



“) h.

bounds for.their behavior. For this purpdse,_let these equations be

rewritten in canonical form as

0 0

15 % (6)
. L b P 22

g:—n'lT ———gwg—nwf(t)xri—%xg,n—l,2,..o,o<t§

- n'IT»

where obviously xi = an, xg = éh' Consider the quadratic, positive

definite function defined on each of these modes Dby

2 D 2 2
vn( D) = [axn n] v [atrte (2 (t)}+[“ ”(1 - gg> ; 52] (1)

n

end denote by V" +this expression with E{fg(t)} substituted for
eT{fg(t)}. Consider now the total time derivative of this function

along the solutions of (6):

' 2
. 2 2 2
Vﬁ(xﬁ,xgjt) = ~2BV§(X§,X2) + [B -wﬁ}ogﬁn w‘f(t)](EBxﬁ +2x§x2) (8)

where
o = i < nfny, o < [T ey (6D 4 (' 0%,

2
Estimating the quotient (26x +2 )/Vn( XS) by a procedure such

as the use of Lagrange multipliers, we obtain

2
I(2Bx +2x™ 1x )/Vn(x g)l £ (Oﬁ)_l/e (9)



from which (8) can be written in the form

T2 (t) '
vg(t) < 2B + [(62-@%{;)2 + E(Be-wn‘rag)nzﬁef(t) (10)
T b ko 1/2 n-1/2

0w (8)17 ()
Integrating this expression between O and T and using the Schwartz

inequality yields

T(-28 + [2(p°- 1/2
V2 (t) = Vo (0)e *[EEopa )] . (11)

T T

This expression is a measure of the exponential decay of the oscilla-
tion of the modes; howevér, note that for every different time T
the expression VE is a different one,

A slightly different expression can be obtained by letting
i — o in (10) and integrating between O and +t. Using again the

Schwarz inequality yields

V'(t) s v“<o) exp t{ as+{2~¢a -l (1nroe (£(6)) /) 2
L +n W‘(e {f (t)} - B{f (t)})/ n]l/2}

<

where ¢P and ap ‘are the same as d§g and o@ with Pp replaced by

by E. Upon noting that lim et{f(t)} =0 and
t -

p and e

lim e {f (t)} = {f (t)} we obtain for sufficiently large t
't-—)oo



R .t ?2_57*"/2{52,-.nu'ﬂ'u( -—“g—E’]’FJHMWME{fg (t)}'*' [ng%vu(l-z:gq?>—'ﬁ'2] + € | )
vV (t) = V*(0)e : (15)

where € is any positive number, as small as desired. Now, for asymptotic
stability it is sufficient that the term multiplying t in the exponéntial
be negative. A simple computation on the quantity in the brackets yields

that this condition is

B(£°(t)] = 4p° <1 - —22-5) - e (1)

where -e€ is any positive number. The most restrictive condition is the
one for n = 1, Hence, for the asymptotic stability of all the modes we

obtain as a sufficient condition that

2
E{fe(t)} s lg (1 - fT’—-g) - € (15)

which also shows that we must have p < ﬂg., Iﬁ is of interest to note
that the exponential estimate (12) is a rather sharp one, since if

f(t) = 0 (the system is autonomous) then we obtain the estimates

ti-28 + /2[62—*1%7#( - §2>+ nuvrl(l - ——22—5)— BEU
o o (16)

BT
which are the exact exponential bounds for the autonomous systemn.

v(t) = V' (0)e

If we consider f£(t) as a random, strictly stationary ergodic
process then the estimate (15) gives us a condition for almost sure

asymptotic stability.



4. Direct Approach

In this section we derive the stability conditions and ex-
ponential Lounds directly from the original equation of motion (l).

Consider first the functional

1 2 )

2
Vo) = [ [(—%{—‘5) - p&%) # V" 2 asng]ax ()

e}

where v = dw/dt. For functions w satisfying the boundary conditions

(2),'0ne can use the calculus of variations to show that

3 2\ > o\
2
J (o= o (3] o)
(o] - C
8o that
o1 : o
Vo (0,v) 2 f [(’TQ"PT> @’;) s (rp)® 4 sgwg]dx. (19)
(o]
‘Assume that
Pp < Wgo (20)

Then V, is positive definite,

The total time derivative of Vy along the solutions of (1) is

easily computed to be



. 1 o |
v-ﬁi(w5v,t).=k»2BVT(w,v).+ %/ [é62VW+263W2+6f(t)<gg> - f(t)vgzﬁ]dx (21)

Using the method of Lagrange multipliers, we can obbain the inequality

1 2 2
L/\l}5£%w+255w2+5f(t)(g§> - f(t)vggg]dx s 1V (%), (22)
o ' ” -
where
e mx @t e (23)
n=1,2,...
Therefore
7, .
'v";(‘t—y = '33 + Y (24)

Integrating this expression between O and T, and using (3) and the

~

Schwartz inequality, we find that

(25 + [ (U e (£5(6)) o 7 >31/2 (25)
aVT(t) < VT(O)e

This expression giVes an exponential bound for the functional VT°
If we let T ->w and then integrate((Zh) between O and t,

we obtain for sufficiently largé t

V(t) < v(0)el TR ¥ [KMBM+WAEif2(ﬁ)}}/(WA~W2p+52)jl/z + e} (26)



where v denotes the functional VT~

with pT replaced by p. The
term multiplying t in the exponential will be negative if

E(f7(t)] = Lxﬁg(l - —%—> - e @7)
)
where € is any positive number. It follows that (27) is a sufficient
condition for almost sure asymptotic stability of the column for the
‘case of a strictly stationary and ergodic load f(t), and for asympbotic
stability in the case of a deterministic load, This condition is the
same as that obtained by a modal analysis in the previous section,

‘We can obtain stronger exponential bounds than (25) and (26) if

. we congider the functional

1 o 1
W (w,v) = f {(v+6w)2 + 2w 2 K [f w(x,t)sin nﬂi'di]sin nﬁx}dx (28)
s} n=1 o
where
K - [(n”w”-ngwng—sz)g . n“w”eT(fQ(t)}]l/ 2, (29)

Following the same procedure as for VT yields equations (11) and (13)

with n =1 and v; replaced by Wy,

5. Discussion of Results

We have derived exponential bounds and stability conditions for

a pinned column subjected to a time-dependent axial load. In particular,



if the l;ai_is_giyenfby‘.p + £(t) with E{f(t)] = 0, then equation
(15) gives an exponentiai bound for each mode, with n = 1 providing
a<bouﬁd for any motién w(x,t) of the column, and equations (15) and
(27) give a sufficient conditiqn for stability. This stability con-
dition is shown in Fig. 1. For comparison, we have also depicted
conditions on E{fg(t)} which can be obtained using the methods of’
references 1 and 3,

As can be seen from Fig. 1, the stability condition derived
heré is a significant improvement on the previously published results
. of other authors, If p < Wg, it is possible to let E{fe(t)} -
as the damping increases, whereas previous results have indicated a
1imit to the.value of E{fg(t)} no matter what the magnitude of damp-
ing.

We note again the direct approach of Section hilwhich eliminates
the mathematical uncertainty involﬁed when judging the stability of a
column by the stability‘of each mode separately. This approach is al-
so of particular advantage ﬁhen dealing with boundary conditions for

which the modes are not as simple as sin nrx,
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Caption for Illustration

Figure 1, Stability Conditions



